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Abstract

Characteristics of capillary-driven ¯ow and phase-change heat transfer in a porous structure heated with a

permeable heating source at the top were studied experimentally and theoretically in this paper. The experiments
show that for small and moderate heat ¯uxes, the whole porous structure was fully saturated with liquid except
adjacent to the horizontal heated surface where evaporation took place uniformly. For higher heat ¯uxes, a two-

phase zone developed in the upper portion of the porous structure while the lower portion of the porous structure
was saturated with subcooled liquid. When the imposed heat ¯ux was further increased, a vapor blanket formed
below the heated surface and the corresponding critical heat ¯ux was reached. The heat transfer coe�cient was

modeled by simultaneously solving the problem of evaporating capillary meniscus in the pore level and the problem
of ¯uid ¯ow through a porous medium. The model is in good agreement with the experimental data, predicting the
variations of the heat transfer coe�cient with the increasing heating load. # 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

The subject of this paper is the study of capillary-

driven heat and mass transfer in a porous structure
heated with a permeable heating boundary at the top.
Interest in this topic arose from the growing e�orts on

the development of capillary pumped loops (CPL) and
loop heat pipes (LHP) which have many engineering
applications including the thermal management of

advanced space platforms and military spacecraft [1,2]
as well as the cooling of electrical and electronic

devices [3,4]. Unlike the previous problems involving
phase-change heat transfer in a porous medium sub-
jected to forced or natural convection [5±10], the capil-

lary force in the present problem, developed at the
liquid±vapor interface in the porous medium, is the
sole driving-force of the ¯ow motion. Another unique

feature of the present problem is that the heating
boundary is a periodically bounded one (with a num-
ber of ®ns) which permits the vapor leaving the heating

boundary through the open space.
Although the experimental data on the present topic

is scarce, some relevant theoretical and numerical in-
vestigations have been reported in the literature.

Demidov and Yatsenko [11] numerically investigated
the heat and mass transfer processes during evapor-
ation in a wet capillary structure with a rectangular
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grooved heated wall. They formulated the problem
based on two important assumptions. First, they

assumed that there existed a superheated vapor zone in
the vicinity of the heated wall (the groove tip) while
the wick was saturated by a subcooled liquid else-

where. Based on this assumption, Darcy's law was
applied to the vapor zone and the liquid zone, respect-
ively. They further assumed that, when the vapor zone

did not exceed the heated surface, there would be a
liquid meniscus near the corners formed by the lateral
sides of the ®n of the heating block and the top surface

of the porous structure. On the other hand, when the
vapor zone expanded beyond the surface of the heated

wall, this liquid meniscus would disappear. They pre-
sented the patterns of isotherms and concluded that

the critical heat ¯ux was reached when the expansion
of the vapor zone exceeded the area of the heated sur-
face. Khrustalev and Faghri [12] numerically studied

the heat and mass transfer processes around a heated
triangular solid ®n penetrating into a wetted porous
structure. They also assumed that the heated surface

was surrounded by a vapor zone. They concluded that
the critical heat ¯ux for this particular con®guration
was reached when the increase of the thermal resist-

ance between the heated surface of the ®n and the
liquid zone with increasing heat ¯ux reached an unac-

Nomenclature

A dispersion constant
As cross-sectional area of a cylindrical pore,

m2

cp speci®c heat, W/kg K
dp particle diameter of porous structure, m
g gravity acceleration, m/s2

h heat transfer coe�cient, W/m2 K
hfg latent heat of vaporization, J/kg
K permeability, m2

Kc curvature of liquid ®lm, mÿ1

kl thermal conductivity of liquid, W/m K
Krl liquid relative permeability
Krv vapor relative permeability

L height of porous structure, m
Ls height of subcooled liquid phase zone, m
_m mass ¯ux of liquid at the inlet of porous

structure, kg/m2 s
_m l total liquid mass ¯ux in the two-phase

zone, kg/m2 s
_m v vapor mass ¯ux departed through the ®ns,

kg/m2 s
_m vr re-circulated vapor mass ¯ux, kg/m2 s

p pressure, Pa
pc capillary force, Pa
pd�Z� disjoining pressure, Pa
q0 heat ¯ux, kW/m2

q0cr critical heat ¯ux, kW/m2

q0pk peak heat ¯ux, kW/m2

Qp total heat ¯ow rate through a cylindrical

pore, kW
r�Z� radius of liquid±vapor interface in pore, m
re� e�ective pore radius, m

rmen radius of the liquid meniscus, m
Rg gas constant, J/kg k
s scaled liquid saturation
sl liquid phase saturation

sli liquid phase irreducible saturation

svi vapor phase irreducible saturation
T temperature, 8C
u super®cial velocity, m/s

x coordinate of x-axis

Greek symbols
a accommodation coe�cient

dl�Z� thickness of liquid ®lm normal to pore
wall, m

d0 thickness of the equilibrium non-evaporat-
ing liquid ®lm, m

e porosity
Z coordinate along the solid±liquid interface
Zb at the bottom of the liquid ®lm meniscus

in a cylindrical pore
Z0 the thickness of the equilibrium non-eva-

porating liquid ®lm

m dynamic viscosity, m2/s
n kinematics viscosity, kg/m s
y e�ective contact angle, degree
r density, kg/m3

s surface tension, N/m

Subscripts
f front of the subcooled liquid zone

l liquid
li inlet of the porous structure
lv liquid±vapor phase zone
max maximum value

min minimum value
s saturation state
top the top of porous structure

v vapor
vo outlet of vapor
wp solid wall of a cylindrical pore

d liquid±vapor interface in pore
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ceptable level or when the thickness of vapor zone at
the ®n top was equal to the minimum thickness of the

porous structure.
In this paper, a combined experimental and theoreti-

cal study was carried out to investigate the capillary-

driven heat and mass transfer characteristics of water
¯owing through a vertical rectangular packed-glass-
bead structure heated by a ®nned wall at the top.
First, we measured the heat transfer rates between the

heating block and the porous structure and observed
the phase-change behaviors occurring in the porous

structure for di�erent heat loads. Based on the exper-
imental investigations, we then modeled the heat and

mass transfer processes in such a system. It is shown
that the predicted results are in good agreement with
the experimental data.

In the following, we shall ®rst report our experimen-
tal work on the problem under consideration. We shall
then present a one-dimensional analysis to the problem
based on thin liquid ®lm evaporation in the pore level

and liquid ¯ow through a porous medium. Finally, the
salient ®ndings of the study will be summarized.

Fig. 1. Schematic of the experimental apparatus.

Fig. 2. Fined heating copper block.
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2. Experimental study

2.1. Apparatus and procedures

Fig. 1 illustrates a schematic of the experimental ap-

paratus used in the present investigation. The verti-
cally-oriented test section (40 mm in height, 99 mm in
width, and 29 mm in depth) was packed with glass

beads, essentially spherical in shape, having an average
particle diameter of dp � 1:09 mm. The phase-change
behavior within the porous structure could be observed

through the transparent front plate. A ®nned copper
block (shown in Fig. 2) with a stainless steel ®lm (0.1
mm in thickness) serving as a heater, a mica sheet ser-
ving as an electrical insulator, and a Te¯on cover plate

serving as a heat insulator on the top, was placed on
the top of the porous structure. As shown in Fig. 2,
the extruded ®n tips in the heating block were essen-

tially ¯at in shape, with a rather small contact area
(1:5� 1:5 mm). The heating unit was carefully
mounted on the top of the porous structure such that

the ®ns of the heating block were in good contact with
the porous medium. Both the top and the bottom
boundaries of the test section were insulated using

glass ®ber wool while the vertical boundaries were well
insulated by a vacuum vessel made of Plexiglas plates.
The vacuum status was kept by a vacuum pump
during the experiments. The inlet temperature of ¯uid

was well controlled by a RTD temperature controller
with two 50 W heaters located in the lower portion of
the test section. The adverse hydrostatic head Dh (the

distance between the top of the porous structure and
the water level) was controlled by adjusting the el-
evation of the platform lifter, on which a water-level

controller was placed. A RTD controller with a 1.5
kW heater was installed to keep the ¯uid temperature
in the water-level controller to a desired value. Both
the water tank and the over¯ow container were placed

on a digital scale such that the mass ¯ow rate ¯owing
to the test section could be measured by reading the
mass change per unit time. Four T-type thermocouples

of 0.8 mm in diameter were used to measure the tem-
peratures of the heating block while eighteen T-type
thermocouples of 0.8 mm in diameter were inserted in

the porous medium for measuring temperature distri-
butions in the porous structure. The vapor pressure pvo
in the heated ®ns was measured by a di�erential press-

ure transducer (Validyne, Model DP15) and a carrier
demodulator (Validyne, Model CD15). A data acqui-
sition system, consisting of a personal computer, an A/
D converter board (MetraByte DAS-20), and two uni-

versal analog input multiplexers (MetraByte EXP-20),
was employed to record the temperature measure-
ments.

In the present study, the heat transfer coe�cient is
de®ned as

h � �QÿQloss �
Ah

ÿ
�Tw ÿ Tv

� , �1�

where Q is the heating power, Qloss is the heat loss,
and Ah denotes the heating surface area, i.e., the cross-

sectional area of the cooper block in contact with the
porous medium. It was estimated that the heat loss
was within 8% in the experiments. In Eq. (1), Tv is the

saturated temperature corresponding to the pressure at
exit pvo while �Tw is the mean temperature at the ®n
tips which was calculated by heat conduction using the

measured temperatures in the heating block.
During the experiments, the adverse hydrostatic

head was kept at h = 35 mm and the inlet temperature
of the subcooled water at Tli = 708C, while various

heat ¯uxes were imposed. Under the steady-state con-
dition for a speci®c heat ¯ux, the mass ¯ux of liquid,
the outlet vapor pressure, as well as the temperatures

in the heating block and the temperatures within the
porous media were measured.
In this work the maximum capillary pressure

�pc�max of the porous structure was measured in a
glass-bead packed tube according to the relation

�pc �max
� rlgLhu, �2�

where rl is the density of the liquid water, and Lhu is
the maximum static hold-up height, which was

measured experimentally. The corresponding minimum
liquid meniscus �rmen�min and the minimum contact
angle ymin can be obtained from

Fig. 3. Variations of the cross-sectional mean temperature

along x-axis for di�erent heat ¯uxes.
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�rmen �min
� 2s

�pc �max

, �3�

and

�pc �max
� 2s cos ymin

reff

, �4�

where s is the surface tension, and the e�ective pore
radius re� is estimated by reff � 0:21dp [4], with dp
being the diameter of the glass beads. From Eq. (3),
we determine �rmen�min � 0:256 mm for the present
glass±water system.

2.2. Results

We now present the experimental results. The vari-

ations of the cross-sectional mean temperature along
the x-axis at four heat ¯uxes of q0 � 13:46, 101.74,
177.20, and 259.58 kW/m2 are illustrated in Fig. 3. For

a small heat ¯ux q0 � 13:46 kW/m2), it is seen that the
temperature rose almost lineally from the inlet zone
toward the outlet of the porous structure. As the

imposed heat ¯ux was increased to q0 � 101:74 and
177.20 kW/m2, however, the temperature variations
(represented by the solid circles and the solid triangles
in Fig. 3) along the x-axis in the lower portion of the

porous structure became relatively small, but in the
upper portion the temperature variation became extre-
mely steep. This is because at a low heat ¯ux only a

small amount of water evaporated at the top of the
porous structure and the induced mass ¯ow rate of the
working ¯uid was relatively small. Thus, the heat con-

vection due to the corresponding movement of water
was relatively insigni®cant for this case. However, as
the heat ¯ux was increased, more water evaporated

and the motion of water in the porous medium became
much more signi®cant owing to a larger capillary-dri-
ven force developed at the liquid±vapor interface.
Under this situation, heat transfer due to convection

became more pronounced. Therefore, the temperatures
increased relatively slowly in the lower portion of the
porous wick evaporator due to the cooling e�ect of the

subcooled water entering the structure from the bot-
tom while it increased more rapidly in the upper por-
tion of the porous structure because of the heating

e�ect from the top of the structure. When the heat ¯ux
was increased to q0 � 259:58 kW/m2, although the
variation of the temperature in the lower portion of

the porous structure was in close to that at q0 � 177:20
kW/m2, the behavior was rather di�erent in the vicin-
ity of the heated surface: the temperatures at the two
locations, x � 34 and 37.5 mm, were equal and at the

saturated value. This clearly indicates that the two-
phase zone existed adjacent to the heated surface when
the imposed heat ¯ux was su�ciently high.

We now present the measured heat transfer coe�-
cient at various imposed heat ¯uxes in Fig. 4, where
the circular symbols represent the measured data while

Fig. 4. Variation of the heat transfer coe�cient versus the imposed heat ¯ux.
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the solid line with cross symbols represents the theor-

etical prediction, which will be discussed in the later
sections. It is shown that with an increase of heat ¯ux,
the heat transfer coe�cient gradually increased,

reached a peak value, and dropped rapidly afterwards.
As illustrated in Fig. 4, this peak value will be referred
to as the peak heat transfer coe�cient hpk while the

corresponding heat ¯ux at which the peak heat transfer
occurs will be referred to as the peak heat ¯ux q0pk.
We now explain the variation of the heat transfer coef-
®cient with the imposed heat ¯ux based on our obser-

vations of the phase-change behavior occurring in the
vicinity of the heated surface. During the experiments,
we observed that the following three typical phase-

change behaviors undergoing in the vicinity of the
heated surface when the imposed heat ¯ux is varied: (i)
for heat ¯uxes smaller than the peak heat ¯ux

(q0pk � 177:2 kW/m2), no macroscopic vapor zone was
visually observed. In this case, evaporation uniformly
took place from the liquid residing on the heated sur-

face of the porous structure while the reminder region
of the porous structure was saturated with liquid, as
sketched in Fig. 5a. The increase of the heat transfer
coe�cient with the imposed heat ¯ux may be attribu-

ted to the fact that evaporating liquid ®lm in the pore

adjacent to the heated surface became thinner; (ii) as
the imposed heat ¯ux was larger than the peak value
(q0pk � 177:2 kW/m2) but smaller than q0 � 259:58
kW/m2, it was observed that vapor was formed in
some locations along the heated surface and these
local vapor zones receded downward into the porous

structure while the reminder regions of the heated sur-
face were still kept wetted, as sketched in Fig. 5b. In
this case, heat transfer was primarily maintained by
liquid evaporation in the reminder wetted regions. As

the imposed heat ¯ux was increased, the average area
of the wetted region became smaller and therefore, the
heat transfer coe�cient began to drop with increasing

heat ¯ux; (iii) when the heat ¯ux was varied further
from q0 � 259:58 to 264.81 kW/m2 (an increase of only
2%), a vapor blanket was formed along the heated

surface of the porous structure. As a result, both the
wall and the outlet temperatures increased drastically
and the steady state could not be maintained. This is

evident from Fig. 6 where the wall temperatures and
the outlet vapor temperatures at q0 � 259:58 and
264.81 kW/m2 are plotted against time. As seen from
Fig. 6a and b, both the wall temperature and the outlet

Fig. 5. Phase-change behaviors at di�erent heat loads.
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Fig. 6. Time-dependent wall and vapor temperatures at the critical heat ¯ux.
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temperature were independent of time when the
imposed heat ¯ux was kept at q0 � 259:58 kW/m2.

However, when the heat ¯ux was increased to q0 �
264:81 kW/m2, both the wall and the outlet tempera-
tures increased exponentially with time. Therefore, the

value of q0cr � 264:81 kW/m2 can be regarded as the
critical heat ¯ux under this particular condition.
The experimental ®ndings can now be summarized

as follows: (i) when q0<q0pk, the whole porous struc-
ture was fully saturated with liquid except the heated
surface where liquid evaporation took place uniformly;

(ii) in the range of q0pk<q0<q0cr, a two-phase zone was
formed in the vicinity of the heated surface; and (iii) at
q0cr, a vapor blanket formed below the heated surface
and q0cr was considered to be the corresponding criti-

cal heat ¯ux.

3. Theoretical study

Based on the above experimental observations, we

now model heat and mass transfer in a capillary struc-
ture heated by a permeable boundary at the top. We
shall treat the following two cases separately: (i) the

case of small and moderate heat ¯uxes (q0<q0pk), as
depicted in Fig. 5a; and (ii) the case of higher heat
¯uxes (q0pk<q0<q0cr), as depicted in Fig. 5b.

3.1. The case of small and moderate heat ¯uxes

In this section, we shall ®rst analyze heat and ¯uid

¯ow through a porous medium based on Darcy's law
and then model heat and mass transfer in the pore
level of the porous structure based on thin liquid ®lm

evaporation theory.

3.1.1. Liquid ¯ow in a porous medium
We now consider macroscopic motion of liquid

through a porous medium as shown in Fig. 5a. A one-
dimensional approximation of force balance in the ver-
tical direction yields

pc � Dpl � �pvo ÿ pli � � rlgL, �5�

where the capillary force pc is given by

pc � 2s cos y
reff

� 2s
rmen

: �6�

Dpl in Eq. (5) representing the pressure drop due to

the liquid ¯ow in the porous structure can be evaluated
by Darcy's law as

Dpl � _mnlL

K
, �7�

where _m is the mass ¯ow rate of ¯uid, and K �

d2pe
3=150�1ÿ e�2 is the permeability of the porous

structure, with e being the porosity of the porous med-

ium, and nl is the kinematic viscosity of liquid. The
second term �pvo ÿ pli� in Eq. (5) represents the press-
ure di�erence between the inlet and the outlet, which

was obtained experimentally, as mentioned earlier. The
third term in the right-hand side of Eq. (5), rlgL, rep-
resents the adverse gravity. Substituting Eqs. (6) and

(7) into Eq. (5) and rearranging yield

2s
rmen

� _mnlL

K
� �pvo ÿ pli � � rlgL: �8�

Eq. (8) establishes the relationship between the capil-
lary force and the pumped mass ¯ux. In addition, the
overall energy balance for the system requires

q0 � _mhfg � _mcpl�Tv ÿ Tli �, �9�

where the ®rst term on the right-hand side represents
the latent heat, with hfg being the latent heat of vapori-

zation per unit mass, while the second term represents
the sensible heat from the inlet to the outlet. It should
be noted from Eq. (9) that the heat loss due to conduc-

tion from the bottom of the porous structure is neg-
lected. This assumption can be justi®ed in considering
that: (i) the e�ective thermal conductivity of glass

bead±water system is rather small (0.706 W/m 8C);
and (ii) the temperature gradient at this location is
rather small as noted from the experimental data
shown in Fig. 3. Combining Eqs. (8) and (9) gives

pc � 2s
rmen

� nlL

K

q0�
hfg � cpl�Tv ÿ Tli �

�
� �pvo ÿ pli � � rlgL: �10�

Eq. (10) indicates that for a given heat ¯ux q0, capil-
lary menisci are established at the heated surface of
the porous structure with a liquid meniscus radius
rmen. These menisci facilitate the pumping function,

which draws liquid from the wetted porous structure
to the heated surface to be evaporated. Eq. (10) also
shows that a larger heat ¯ux will lead to a larger capil-

lary force. However, it should be noted that in practice
when the heat ¯ux q0 is increased to a certain value,
the liquid meniscus radius will reach the minimum

value �rmen�min, or the equivalent capillary force reaches
its maximum value �pc�max. It is of signi®cance to ®nd
out the value of the heat ¯ux at which the capillary
force reaches its maximum value �pc�max. To this end,

we substitute the measured peak heat ¯ux q0pk � 177:2
kW/m2 and the corresponding pvo listed in Table 2
into Eq. (10), we obtain �rmen�min � 0:252 mm. This

value is almost the same as the measured �rmen�min �
0:256 mm as discussed earlier. This implies that at
q0pk � 177:2 kW/m2 the capillary force reaches its
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maximum value �pc�max. Therefore, a further heat ad-
dition will not lead to a larger pumping action.
Conversely, the increase of the imposed heat ¯ux will

cause more vapor produced at the top of the porous
structure. As a result, a two-phase zone may exist at
the top of the porous structure and the heat transfer
coe�cient begins to drop after qpk. This analysis is

consistent with experimental observations.

3.1.2. Heat transfer in a pore

As mentioned previously, for small and moderate
heat ¯uxes, evaporation took place uniformly on the
heated surface at the top of the porous structure, as

depicted in Fig. 5a. Following Khrustalev and Faghri
[12], we idealize the problem of evaporative heat trans-
fer of liquid in the pore level of porous media to a pro-

blem of heat conduction through the capillary
meniscus with a radius rmen situated in a cylindrical
pore with an e�ective pore radius re�, as shown in Fig.
7. For the present experiment with dp � 1:09 mm, the

e�ective pore radius reff � 0:21dp � 0:229 mm while
the capillary meniscus radius rmen is obtained from Eq.
(10). The major assumptions of the analysis of heat

transfer in the pore level include [12]: (i) the tempera-
ture of the solid±liquid interface Twp is constant along
the Z-coordinate for a small radius of the capillary

meniscus; (ii) vapor at the exit is in the saturated state;
and (iii) the curvature of the axisymmetrical liquid
meniscus is estimated by 2=rmen and hence is indepen-
dent of Z. If we further assume that the heat conduc-

tion through the liquid ®lm is one-dimensional and
normal to the wall of the pore wall, we can write the
local heat ¯ux q0l through the liquid ®lm as

q0l�Z� � kl

Twp ÿ Td�Z�
dl�Z� , �11�

where the local liquid ®lm thickness dl�Z�, as shown in
Fig. 7, is geometrically related to the e�ective radius

reff and the capillary meniscus radius rmen by

dl�Z� � reff ÿ
�������������������������������������������������������
r2men ÿ

� ��������������������
r2men ÿ r2eff

q
� Z

�2
s

: �12�

In Eq. (11), Td�Z� is the temperature at the liquid ®lm

free surface, which is a�ected by the disjoining press-
ure pd and the capillary pressure pc, and also depends
on the interfacial thermal resistance for an extremely
thin liquid ®lm in the pore. The heat ¯ux q0d�Z� due to

evaporation at the liquid±vapor interface can be
obtained from [13]

q0d�Z� � ÿ
�

2a
2ÿ a

�
hfg�����������
2pRg

p "
ps�Tv �������

Tv

p ÿ pd�Z�������������
Td�Z�

p #
, �13�

where a � 0:3 is the accommodation coe�cient for
water [13], Rg is the gas constant, and ps(Tv) represents
the saturation pressure corresponding to the vapor

temperature Tv. The pressure at the thin ®lm interface
pd�Z� in Eq. (13) can be obtained by the extended
Kelvin equation [13]

pd�Z� � ps�Td �

exp

"
pd�Z� ÿ ps�Td � � pd�Z� ÿ sKc

rlRgTd�Z�

#
, �14�

where ps�Td� represents the saturation pressure corre-

sponding to the temperature at the liquid ®lm interface
Td, Kc � 2=rmen is the curvature of the liquid±vapor
interface, and the disjoining pressure pd�Z� is evaluated

by [13]

pd�Z� � ÿ A

dl�Z�3 �15�

with A � 3:11� 10ÿ21 being the dispersion constant
for water on the glass substrate [14].
Under steady-state conditions, the heat conduction

through the liquid ®lm q0l�Z� is balanced by the eva-
porative heat transfer q0d�Z� at the liquid±vapor inter-
face, i.e: q0l�Z� � q0d�Z�. It follows from Eqs. (11) and
(13) that

Fig. 7. Heat transfer in the pore level.
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Td�Z� � Twp �
dl�Z�
kl

�
2a

2ÿ a

�
hfg�����������
2pRg

p
"
ps�Tv �������

Tv

p ÿ pd�Z�������������
Td�Z�

p #
: �16�

Thus, the interfacial temperature Td�Z� and pressure
pd�Z� can be obtained by solving Eqs. (14) and (16)

simultaneously for given values of Tv, Twp, and dl�Z�.
As indicated from Eq. (15), the disjoining pressure

increases when the liquid ®lm becomes thin. Since the

liquid ®lm near the top of the pore (Z40) becomes
extremely thin, the disjoining pressure in this region
becomes rather high. As a result, the pressure pd�Z� at
the liquid ®lm interface is much lower than the satur-

ation pressure ps(Tv) corresponding to the vapor tem-
perature Tv, thereby the thermal resistance at the
liquid±vapor phase interface becoming very high. For

this reason, a non-evaporating superheated liquid ®lm
exists in the extremely thin liquid ®lm near the top of
the pore. The thickness of the equilibrium non-evapor-

ating liquid ®lm 0 can be obtained from Eqs. (11) to
(16) by letting q0d�Z� � 0, Td�Z� � Twp, and dl�Z� � d0
to give

d0 � A1=3

(
ps�Tv �

���������
Twp

Tv

r
ÿ ps

ÿ
Twp

�ÿ rlRgTwp

ln

"
ps�Tv �
ps

ÿ
Twp

� ���������
Twp

Tv

r #)ÿ1=3
, �17�

where ps(Twp) is the saturation pressure corresponding

to the wall temperature Twp. Note that the capillary
force term is neglected due to sKc<pd. The length of
the equilibrium non-evaporating liquid ®lm Z0 along

the coordinate corresponding to d0 can be obtained
from

Z0 �
������������������������������������
r2men ÿ �reff ÿ d0 �2

q
ÿ

��������������������
r2men ÿ r2eff

q
: �18�

Considering that the heat transfer takes place only
from Z0 to Zb � rmen ÿ

��������
r2men

p ÿ r2eff (see Fig. 7), the
total heat ¯ow rate through a single pore Qp is de®ned
as

Qp �
�Zb

Z0

Twp ÿ Td�Z�
dl�Z� 2pr�Z� dZ, �19�

where

r�Z� � reff ÿ dl�Z� �
�������������������������������������������������������
r2men ÿ

� ��������������������
r2men ÿ r2eff

q
� Z

�2
s

: �20�

Under the assumption that the surface porosity of the
porous structure equals to the volumetric porosity e,
the cross-sectional area of a cylindrical pore As can be
represented by

As � pr2eff

e
: �21�

The evaporative heat ¯ux at the top of the porous
structure Qp=As is balanced by the latent heat of the

incoming liquid ¯ow _m , thus

Qp � _mhfgpr2eff

e
: �22�

Combining Eqs. (19) and (22) yields

_mhfgpr2eff

e
�
�Zb

Z0

Twp ÿ Td�Z�
dl�Z� 2pr�Z� dZ: �23�

We now de®ne the predicted heat transfer coe�cient
as

hpre � q0
Twp ÿ Tv

, �24�

where the wall temperature Twp can be obtained by
solving Eqs. (16) and (23) simultaneously for a given

imposed heat ¯ux q0.

3.1.3. Summary

We now summarize the procedures of calculating
heat transfer coe�cient hpre for small and moderate
heat ¯uxes presented above. For a given heat ¯ux q0,
the meniscus radius rmen of the liquid ®lm can be
determined from Eq. (10). The local liquid ®lm thick-
ness dl�Z� in the cylindrical pore can then be deter-
mined from Eq. (12). Twp and Td�Z� can be obtained

by solving Eqs. (16) and (23) simultaneously. The heat
transfer coe�cient hpre can ®nally be calculated from
Eq. (24).

3.2. The case of high heat ¯uxes

Fig. 5b depicts the induced ¯ow in the porous struc-
ture at high heat ¯uxes. The induced ¯ow can be
divided into two zones: a two-phase zone with a length
of dlv in the upper section and a subcooled liquid zone

with a length of Ls in the lower portion. In the two-
phase zone, the liquid saturation s varies from unity at
the subcooled liquid front (x � Ls) to a value at the

top (x � L), denoted by stop, where stop<1. It is seen
from Fig. 5b that the heated surface at x � L consists
of vapor regions and wetted regions, with stop describ-

ing the relative fraction of the wetted regions. We now
assume that in this case liquid evaporation takes place
only on the wetted top surface and there is no evapor-
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ation inside the porous structure. This assumption is

based on the fact that the isothermal two-phase zone
in the top of the porous structure precludes heat con-
ducted from the heated surface to the two-phase zone.
The rapid evaporation on the wetted top surface at

high heat ¯uxes leads to an increase vapor pressure at
the heated surface. This, in turn, may cause some of
generated vapor re-entering to the porous structure,

due to a slight pressure gradient from the top toward
bottom, although the majority of vapor moves out
from the ®ns. This re-circulated vapor eventually con-

denses at the interface between the subcooled liquid
and the two-phase zone (x � Ls). We now analyze the
mass balance in the domain as illustrated in Fig. 8. If

we denote the total evaporation mass ¯ux or the total
liquid ¯ux in the two-phase zone moving toward the
heated surface by _m l, then we have the following mass
balance at the heated surface

_m l � _m v � _m vr, �25�
where _m v is the vapor mass ¯ux departed through the

®ns and _m vr represents the re-circulated vapor mass
¯ux. Under the steady-state condition, the global mass
conservation requires that the total subcooled liquid
mass ¯ux _m equals to the vapor mass ¯ux departed

through the ®ns _m v, thus _mv � _m , where _m is given
by Eq. (9). The re-circulated vapor mass ¯ux _m vr can

be obtained from the energy balance as

_m vrhfg � _mcpl�Ts ÿ Tli �: �26�

Eq. (26) indicates that the increase of subcooled liquid
temperature from the inlet toward the subcooled liquid
front is due to the heat release from the re-circulated

vapor condensation. Substituting Eq. (9) into Eq. (26)
yields

_m vr � q0
hfg=

�
cpl�Ts ÿ Tli �

�� 1
: �27�

Introducing a dimensionless parameter j

j � _m v

_m vr

� hfg

cpl�Ts ÿ Tli � : �28�

Eqs. (26) and (27) can then be rewritten as

_m vr � q0
�1� j�hfg

, �29�

and

_m v � q0
�1� 1=j�hfg

: �30�

We now assume that the heat ¯ow rate through a
single cylindrical wet pore can be written as

Qp � _m phfgAs, �31�

where _m p � _m l=stop is the mass ¯ux of liquid ¯owing
to the wetted pore, and the cross-sectional area of a

cylindrical pore As is given by Eq. (21). Combining
Eqs. (31) and (21) and with the aid of Eq. (19) gives
the energy balance at the cylindrical pore as

_mhfgpr2eff

estop

�
�Zb

Z0

Twp ÿ Td�Z�
dl�Z� 2pr�Z� dZ, �32�

where the local liquid ®lm thickness dl�Z� in the cylind-
rical pore can then be determined from Eq. (12) for an
appropriate capillary radius rmen. As discussed earlier,

when the heat ¯ux exceeds q0pk, the capillary radius
reduces to its minimum value (rmen)min or the corre-
sponding capillary force attends its maximum value

( pc)max, which was experimentally determined from
Eq. (3). It follows that the local liquid ®lm thickness
dl�Z� at higher heat ¯uxes can be determined from Eq.

(12). The mass ¯ux _m in Eq. (32) can be obtained
from Eq. (9) for a speci®c heat ¯ux while the other
two unknowns Twp and Td�Z� can be obtained by sol-

ving Eqs. (16) and (32) simultaneously. The only
remaining unknown in Eq. (32) is the saturation at the

Fig. 8. Schematic of the re-circulated vapor mass ¯ux in the

two-phase zone.
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heated surface stop. To obtain stop, we have to ®rst
obtain the length of the two-phase zone dlv.

3.2.1. Determination of the length of the two-phase zone
dlv

We now consider the one-dimensional problem of
¯uid ¯ow through the porous medium in the liquid
zone (0RxRLs). The super®cial velocity of ¯uid in the

liquid zone is given by

ul � ÿK

ml

�
dpl

dx
� rlg

�
: �33�

The boundary conditions for Eq. (33) are

at x � 0: pl � pli �34�

at x � Ls: pl � plf �35�
where plf is the liquid pressure at the interface between
the subcooled liquid zone and the two-phase zone

(x � Ls), which is related to the vapor pressure pvf and
the capillary pressure by

plf � pvf ÿ �pc �max
, �36�

with the vapor pressure at pvf �x � Ls� being deter-

mined later by Eq. (52). The length of the two-phase
zone dlv can be obtained by integrating Eq. (33) sub-
jected to the boundary conditions Eqs. (34) and (35) to
give

dlv � Lÿ Ls � Lÿ
��pc �max

ÿ�pvf ÿ pli ��ÿ
_mnl=K� rlg

� : �37�

3.2.2. Determination of the saturation at the top stop

In this section, we shall conduct a one-dimensional

hydrodynamic analysis to determine the saturation dis-
tribution in the two-phase zone. As discussed pre-
viously, a counter-current ¯ow of the liquid phase _m l

and the vapor phase _m vr exists in the two-phase zone.

The pressure gradients of vapor phase and liquid
phase can be given as, respectively,

dpv

dx
� ÿ uvmv

KKrv

ÿ rvg, �38�

and

dpl

dx
� ÿ ulml

KKrl

ÿ rlg, �39�

where Krl is the relative permeability of liquid phase
with the subscripts `l' and `v' denoting the liquid phase
and vapor phase, respectively. Rewriting Eqs. (38) and

(39) in terms of the vapor mass ¯ux and the liquid
mass ¯ux gives

dpv

dx
� _m vrnv

KKrv

ÿ rvg, �40�

and

dpl

dx
� ÿ _m lnl

KKrl

ÿ rlg: �41�

Subtracting Eq. (40) from Eq. (41) gives the capillary
pressure gradient in the two-phase zone as

dpc

dx
� _m lnl

KKrl

� _m vrnv

KKrv

� �rl ÿ rv �g, �42�

Substituting Eqs. (29) and (30) into Eq. (42) yields

dpc

dx
� q0

Khfg�1� j�
� �1� j�nl

Krl

� nv

Krv

�
� �rl ÿ rv �g: �43�

We now de®ne the following dimensionless parameters
[15]

x � �xÿ Ls ��rl ÿ rv �g
s

�
K

e

�1=2

, f � pc

s

�
K

e

�1=2

,

o � q0nv

�1� j�Khfg�rl ÿ rv �g
, b � �1� j� nl

nv

,

and

s � sl ÿ sli

1ÿ sli ÿ svi

,

where sli and svi represent the irreducible liquid and

vapor saturation. Eq. (43) can then be recast into a
dimensionless form

df

dx
� o

�
1

Krv

� b
Krl

�
� 1: �44�

If it is assumed that the capillary pressure is a function

only of s in the two-phase zone, then

df

dx
� df

ds

ds

dx
: �45�

It follows from Eqs. (44) and (45) that

ds

dx
�

�
o
�

1

Krv

� b
Krl

�
� 1

�
f 0

: �46�

An equation similar to Eq. (46) was also obtained by
Undell [15]. The appropriate boundary condition of
Eq. (46) at the interface between the subcooled liquid
zone and the two-phase zone is

x � 0: s � 1 �47�
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The liquid and vapor relative permeabilities reported
by Verma et al. [16] can be represented by the follow-
ing expressions

Krl � s3, �48�
and

Krv � 1:2984ÿ 1:9832s� 0:7432s2: �49�
The correlation for capillary pressure data obtained by
Grosser et al. [17] gives

f�s� � 0:48� 0:036 ln

� �1ÿ sl �
sl

�
: �50�

The scaled liquid saturation distribution in the two-
phase zone can now be obtained by solving Eq. (46)

subjected to the boundary condition Eq. (47) by the
Runge±Kutta method for a speci®c heat ¯ux q0 and
the length of two-phase zone dlv given by Eq. (37).
Thus, the saturation at the heated surface stop can be

determined.
Another unknown for solving the length of the two-

phase zone dlv from Eq. (37) is the vapor pressure pvf
at the interface between the subcooled liquid zone and
the two-phase zone (x � Ls), which can now be
obtained by ®rst substituting Eq. (29) into Eq. (38)),

followed by integrating Eq. (38) subject to the bound-
ary condition

x � L: pv � pvo �51�
to give

Table 1

Data for the computation of the presented example

Liquid Water

Solid Glass

Particle diameter of glass beads, dp 1.09 (mm)

Porosity of the packed glass beads, e 0.3685

Gas constant, Rg 462 (J kgÿ1 Kÿ1)
Dispersion constant, A 3.15 � 10ÿ21 J
Accomodation coe�cient a 0.03

Irreducible liquid saturation, sli 0

Irreducible vapor saturation, svi 0.11 (N mÿ1)
Surface tension s 0.05886

Minimum e�ective contact angle ymin 26.649 (degree)

Latent heat of evaporation, hfg 2257.1 � 103 (J kgÿ1)
Density of saturation vapor, rv 0.5977 (kg mÿ3)
Density of saturation liquid, rl 998 (kg mÿ3)
Kinematic viscosity of liquid ul in liquid zone 3.26 � 10ÿ7 (m2 sÿ1)
Kinematic viscosity of liquid ul in two-phase zone 2.95 � 10ÿ7 (m2 sÿ1)
Thermal conductivity of solid, kw 0.78 (W mÿ1 Kÿ1)
Thermal conductivity of liquid, kl 0.68 (W mÿ1 Kÿ1)

Table 2

Measured outlet pressures vs. predicted saturation and the length of the two-phase zone

Imposed heat ¯ux (kW/m2) pvo gauge pressure (Pa) Predicted s (X � 40 mm) Predicted dlv (mm)

13.5 6.21 1.000 0.00

41.01 21.13 1.000 0.00

69.94 61.56 1.000 0.00

101.74 92.53 1.000 0.00

131.46 107.41 1.000 0.00

158.25 113.79 0.998 0.85

177.19 124.64 0.973 1.24

208.75 139.51 0.927 2.82

216.35 143.72 0.911 3.26

229.24 161.11 0.835 5.09

252.23 182.73 0.711 7.37

259.58 195.12 0.628 8.68
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pvf � pvo ÿ
�L
Ls

�
q0nv

Khfg�1� j�Krv

ÿ rvg

�
dx: �52�

3.2.3. Summary
We now summarize the procedures of calculating

the heat transfer coe�cient hpre for high heat ¯uxes

presented above. First, solve Eqs. (37), (46) and (52)
simultaneously for dlv, pvf, and the saturation distri-
bution. Secondly, using the measured value of the

minimum capillary radius given by Eq. (3), to deter-
mine the local liquid ®lm thickness dl�Z� in the cylindri-
cal pore from Eq. (12). Thirdly, obtain Twp and Td�Z�
by solving Eqs. (16) and (32) simultaneously. The heat
transfer coe�cient can ®nally be calculated from Eq.
(24).

4. Comparison with experiments

We now present the predicted results based on the
above analytical model and then compare them with
the experimental data. All the computations were

based on the thermophysical properties of the glass-
water system listed in Table 1 as well as the measured
vapor pressure at the exit pvo for a speci®c heat ¯ux
presented in Table 2.

The predicted values of the saturation at the heated

surface of the porous structure stop and the length of

the two-phase zone dlv are presented in Table 2. It is
seen that when the imposed heat ¯ux is less than
158.25 kW/m2, stop remains to be 1.00 and the corre-

sponding length of the two-phase zone dlv is zero. As
the heat ¯ux is higher than 158.25 kW/m2, the satur-
ation begins to drop rapidly while the corresponding
length of the two-phase begins to increase. The satur-

ation distributions in the two-phase zone for selected
heat ¯uxes (corresponding to 208.75, 229.23, and
259.58 kW/m2) are displayed in Fig. 9. As seen from

this ®gure, the saturation is progressively decreased
from the interface between the subcooled liquid and
the two-phase zone (s � 1) toward the exit of the por-

ous structure. Fig. 9 also shows that when the imposed
heat ¯ux is increased, the saturation at the top
decreases while the length of the two-phase zone
becomes longer.

A comparison of the heat transfer coe�cient based
on the theoretical model (represented by the solid line
with cross symbols) and the experimental data (rep-

resented by the circular symbols) is illustrated in Fig.
4. It may be relevant to mention that the discrete
nature of the predicted heat transfer coe�cient was

due to the fact that the measured outlet vapor pressure
data was not continuous. It is seen that the theoretical
results, in terms of magnitude and trends, are in good

agreement with the experimental data, the maximum

Fig. 9. Predicted saturation distributions for di�erent heat ¯uxes.
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relative di�erence between the two being less than
11.2%.

5. Concluding remarks

Experimental results and theoretical modeling on
evaporative heat transfer characteristics from a capil-

lary porous structure heated with a permeable heating
source at the top were reported in this paper. The ex-
periments show that the system was operating in three

typical conditions, depending on its heat loads. For
small and moderate heat ¯uxes, evaporation took
place uniformly adjacent the heated surface of the
wetted porous structure. For higher heat ¯uxes, the

thermodynamic state of the system consisted of a two-
phase zone in the upper portion and a subcooled liquid
zone in the lower portion in the porous structure.

When the imposed heat ¯ux was further increased, a
vapor blanket formed below the heated surface and
therefore, the corresponding critical heat ¯ux was

reached. The heat transfer coe�cient was modeled by
simultaneously solving the problem of evaporating
capillary meniscus in the pore level and the problem of

¯uid ¯ow through a porous medium. It is shown that
the model is in good agreement with the experimental
data, predicting the variations of the heat transfer
coe�cient with the increasing heating load.
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